翻訳と辞書
Words near each other
・ Singular cardinals hypothesis
・ Singular control
・ Singular distribution
・ Singular function
・ Singular homology
・ Singular integral
・ Singular integral operators of convolution type
・ Singular integral operators on closed curves
・ Singular isothermal sphere profile
・ Singular measure
・ Singular perturbation
・ Singular point of a curve
・ Singular point of an algebraic variety
・ Singular SA03
・ Singular solution
Singular spectrum analysis
・ Singular submodule
・ Singular term
・ Singular they
・ Singular trace
・ Singular value
・ Singular value decomposition
・ Singulari Nos
・ Singularia
・ Singularis
・ Singularitarianism
・ Singularity
・ Singularity (audio drama)
・ Singularity (Bill DeSmedt novel)
・ Singularity (climate)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Singular spectrum analysis : ウィキペディア英語版
Singular spectrum analysis
In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève (1945, 1978) spectral decomposition of time series and random fields and in the Mañé (1981)–Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a sum of components, each having a meaningful interpretation. The name "singular spectrum analysis" relates to the spectrum of eigenvalues in a singular value decomposition of a covariance matrix, and not directly to a frequency domain decomposition.
== Brief history ==

The origins of SSA and, more generally, of subspace-based methods for signal processing, go back to the eighteenth century (Prony's method). A key development was the formulation of the spectral decomposition of the covariance operator of stochastic processes by Kari Karhunen and Michel Loève in the late 1940s (Loève, 1945; Karhunen, 1947).
Broomhead and King (1986a, b) and Fraedrich (1986) proposed to use SSA and multichannel SSA (M-SSA) in the context of nonlinear dynamics for the purpose of reconstructing the attractor of a system from measured time series. These authors provided an extension and a more robust application of the idea of reconstructing dynamics from a single time series based on the embedding theorem. Several other authors had already applied simple versions of M-SSA to meteorological and ecological data sets (Colebrook, 1978; Barnett and Hasselmann, 1979; Weare and Nasstrom, 1982).
Ghil, Vautard and their colleagues (Vautard and Ghil, 1989; Ghil and Vautard, 1991; Vautard et al., 1992; Ghil et al., 2002) noticed the analogy between the trajectory matrix of Broomhead and King, on the one hand, and the Karhunen–Loeve decomposition (Principal component analysis in the time domain), on the other. Thus, SSA can be used as a time-and-frequency domain method for time series analysis — independently from attractor reconstruction and including cases in which the latter may fail. The survey paper of Ghil et al. (2002) is the basis of the #Singular spectrum analysis (SSA) section of this article. A crucial result of the work of these authors is that SSA can robustly recover the "skeleton" of an attractor, including in the presence of noise. This skeleton is formed by the least unstable periodic orbits, which can be identified in the eigenvalue spectra of SSA and M-SSA. The identification and detailed description of these orbits can provide highly useful pointers to the underlying nonlinear dynamics.
The so-called ‘Caterpillar’ methodology is a version of SSA that was developed in the former Soviet Union, independently of the mainstream SSA work in the West. This methodology became known in the rest of the world more recently (Danilov and Zhigljavsky, Eds., 1997; Golyandina et al., 2001; Zhigljavsky, Ed., 2010; Golyandina and Zhigljavsky, 2013). ‘Caterpillar-SSA’ emphasizes the concept of separability, a concept that leads, for example, to specific recommendations concerning the choice of SSA parameters. This method is thoroughly described in #SSA as a model-free tool section of this article.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Singular spectrum analysis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.